Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Appl Oral Sci ; 31: e20220421, 2023.
Article in English | MEDLINE | ID: covidwho-2276151

ABSTRACT

The demands for dental materials continue to grow, driven by the desire to reach a better performance than currently achieved by the available materials. In the dental restorative ceramic field, the structures evolved from the metal-ceramic systems to highly translucent multilayered zirconia, aiming not only for tailored mechanical properties but also for the aesthetics to mimic natural teeth. Ceramics are widely used in prosthetic dentistry due to their attractive clinical properties, including high strength, biocompatibility, chemical stability, and a good combination of optical properties. Metal-ceramics type has always been the golden standard of dental reconstruction. However, this system lacks aesthetic aspects. For this reason, efforts are made to develop materials that met both the mechanical features necessary for the safe performance of the restoration as well as the aesthetic aspects, aiming for a beautiful smile. In this field, glass and high-strength core ceramics have been highly investigated for applications in dental restoration due to their excellent combination of mechanical properties and translucency. However, since these are recent materials when compared with the metal-ceramic system, many studies are still required to guarantee the quality and longevity of these systems. Therefore, a background on available dental materials properties is a starting point to provoke a discussion on the development of potential alternatives to rehabilitate lost hard and soft tissue structures with ceramic-based tooth and implant-supported reconstructions. This review aims to bring the most recent materials research of the two major categories of ceramic restorations: ceramic-metal system and all-ceramic restorations. The practical aspects are herein presented regarding the evolution and development of materials, technologies applications, strength, color, and aesthetics. A trend was observed to use high-strength core ceramics type due to their ability to be manufactured by CAD/CAM technology. In addition, the impacts of COVID-19 on the market of dental restorative ceramics are presented.


Subject(s)
COVID-19 , Dental Materials , Humans , Dental Materials/chemistry , Ceramics/chemistry , Computer-Aided Design , Dental Porcelain , Zirconium/chemistry , Materials Testing , Surface Properties
2.
ACS Appl Mater Interfaces ; 14(25): 28615-28627, 2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-1890109

ABSTRACT

In this study, we present a complementary approach for obtaining an effective drug, based on acriflavine (ACF) and zirconium-based metal-organic frameworks (MOFs), against SARS-CoV-2. The experimental results showed that acriflavine inhibits the interaction between viral receptor-binding domain (RBD) of spike protein and angiotensin converting enzyme-2 (ACE2) host receptor driving viral cell entry. The prepared ACF@MOF composites exhibited low (MOF-808 and UiO-66) and high (UiO-67 and NU-1000) ACF loadings. The drug release profiles from prepared composites showed different release kinetics depending on the local pore environment. The long-term ACF release with the effective antiviral ACF concentration was observed for all studied ACF@MOF composites. The density functional theory (DFT) calculations allowed us to determine that π-π stacking together with electrostatic interaction plays an important role in acriflavine adsorption and release from ACF@MOF composites. The molecular docking results have shown that acriflavine interacts with several possible binding sites within the RBD and binding site at the RBD/ACE2 interface. The cytotoxicity and ecotoxicity results have confirmed that the prepared ACF@MOF composites may be considered potentially safe for living organisms. The complementary experimental and theoretical results presented in this study have confirmed that the ACF@MOF composites may be considered a potential candidate for the COVID-19 treatment, which makes them good candidates for clinical trials.


Subject(s)
COVID-19 Drug Treatment , Metal-Organic Frameworks , Acriflavine/pharmacology , Angiotensin-Converting Enzyme 2 , Humans , Molecular Docking Simulation , Phthalic Acids , Protein Binding , SARS-CoV-2 , Zirconium/chemistry
3.
J Am Chem Soc ; 143(40): 16777-16785, 2021 10 13.
Article in English | MEDLINE | ID: covidwho-1442692

ABSTRACT

The most recent global health crisis caused by the SARS-CoV-2 outbreak and the alarming use of chemical warfare agents highlight the necessity to produce efficient protective clothing and masks against biohazard and chemical threats. However, the development of a multifunctional protective textile is still behind to supply adequate protection for the public. To tackle this challenge, we designed multifunctional and regenerable N-chlorine based biocidal and detoxifying textiles using a robust zirconium metal-organic framework (MOF), UiO-66-NH2, as a chlorine carrier which can be easily coated on textile fibers. A chlorine bleaching converted the amine groups located on the MOF linker to active N-chlorine structures. The fibrous composite exhibited rapid biocidal activity against both Gram-negative bacteria (E. coli) and Gram-positive bacteria (S. aureus) with up to a 7 log reduction within 5 min for each strain as well as a 5 log reduction of SARS-CoV-2 within 15 min. Moreover, the active chlorine loaded MOF/fiber composite selectively and rapidly degraded sulfur mustard and its chemical simulant 2-chloroethyl ethyl sulfide (CEES) with half-lives less than 3 minutes. The versatile MOF-based fibrous composite designed here has the potential to serve as protective cloth against both biological and chemical threats.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Chemical Warfare Agents/chemistry , Chlorine/pharmacology , Metal-Organic Frameworks/pharmacology , Protective Clothing , Animals , Anti-Bacterial Agents/chemical synthesis , Antiviral Agents/chemical synthesis , Cell Line , Chlorine/chemistry , Escherichia coli/drug effects , Halogenation , Humans , Metal-Organic Frameworks/chemical synthesis , Microbial Sensitivity Tests , Mustard Gas/analogs & derivatives , Mustard Gas/chemistry , Oxidation-Reduction , SARS-CoV-2/drug effects , Staphylococcus aureus/drug effects , Textiles , Zirconium/chemistry
4.
Molecules ; 26(11)2021 May 28.
Article in English | MEDLINE | ID: covidwho-1320599

ABSTRACT

Deferoxamine B is an outstanding molecule which has been widely studied in the past decade for its ability to bind iron and many other metal ions. The versatility of this metal chelator makes it suitable for a number of medicinal and analytical applications, from the well-known iron chelation therapy to the most recent use in sensor devices. The three bidentate hydroxamic functional groups of deferoxamine B are the centerpiece of its metal binding ability, which allows the formation of stable complexes with many transition, lanthanoid and actinoid metal ions. In addition to the ferric ion, in fact, more than 20 different metal complexes of deferoxamine b have been characterized in terms of their chemical speciation in solution. In addition, the availability of a terminal amino group, most often not involved in complexation, opens the way to deferoxamine B modification and functionalization. This review aims to collect and summarize the available data concerning the complex-formation equilibria in solutions of deferoxamine B with different metal ions. A general overview of the progress of its applications over the past decade is also discussed, including the treatment of iron overload-associated diseases, its clinical use against cancer and neurodegenerative disorders and its role as a diagnostic tool.


Subject(s)
Chelating Agents/chemistry , Deferoxamine/chemistry , Animals , Antineoplastic Agents/pharmacology , Chelating Agents/pharmacology , Chemistry, Pharmaceutical/methods , Electrochemistry/methods , Electrolytes , Humans , Hydrogen-Ion Concentration , Ions , Iron/metabolism , Iron Chelating Agents/chemistry , Iron Overload/drug therapy , Kinetics , Ligands , Metals/chemistry , Neoplasms/drug therapy , Potentiometry , SARS-CoV-2 , Temperature , Zirconium/chemistry , COVID-19 Drug Treatment
5.
Int J Prosthodont ; 35(3): 343­349, 2022.
Article in English | MEDLINE | ID: covidwho-1116838

ABSTRACT

PURPOSE: To describe the possible adverse effects of sodium hypochlorite (NaOCl) solutions, high-concentration alcohol solutions, and povidone-iodine products, which are indicated for disinfection of inanimate surfaces against human coronavirus of the severe acute respiratory syndrome (SARS-CoV), on prosthesis materials, including zirconia, lithium disilicate, and acrylic resin. MATERIALS AND METHODS: A systematic literature research for articles published between January 2010 and February 2020 was conducted in Scopus, PubMed/Medline, Web of Science, Embase, and Science Direct using a combination of the following MeSH/Emtree terms and keywords: sodium hypochlorite, alcohol, ethanol, povidone-iodine, dental ceramic, zirconia, lithium disilicate, and acrylic resin. RESULTS: A total of 538 studies were identified in the search during initial screening, of which 44 were subject to full-text evaluation, and 24 fulfilled the inclusion criteria. Seven articles on zirconia and lithium disilicate investigated the effect of NaOCl (0.5% and 1%), 96% isopropanol, and 80% ethanol on bond strength after saliva contamination. The remaining articles evaluated color alteration, surface roughness modifications, decrease in flexural strength, and bonding strength of all cleaning agents on acrylic resin. CONCLUSION: NaOCl (1%) solution for 1 minute is recommended to reduce SARS-CoV infectivity and to minimize the risk of cross-contamination through prosthetic materials. The increase in surface roughness and color alteration were recorded using 1% NaOCl on acrylic resin, but this increase was not clinically significant. A decrease in bonding strength was determined after using 1% NaOCl, 96% isopropanol, and 80% ethanol solutions on lithium disilicate. Silanization before the try-in procedure and the application of the second layer of silane after cleaning methods are recommended to improve the bonding strength.


Subject(s)
COVID-19 , Dental Bonding , 2-Propanol , Acrylic Resins , COVID-19/prevention & control , Ceramics/chemistry , Dental Bonding/methods , Dental Porcelain/chemistry , Dental Stress Analysis , Disinfection , Ethanol , Humans , Materials Testing , Pandemics , Povidone-Iodine , Resin Cements , Sodium Hypochlorite , Surface Properties , Systematic Reviews as Topic , Zirconium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL